Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 259(Pt 2): 129270, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199531

RESUMO

A deep understanding of the inherent roles of wood polymers such as cellulose, hemicelluloses, and lignin in the hierarchical structure of wood is of key importance for advancing functional wood-based materials but is currently lacking. To address this gap, we clarified the underexplored contributions of wood polymer assemblies to the structural support and compressive properties of wood by chemically removing polysaccharides or lignin from wood blocks of a conifer Cryptomeria japonica. Compositional and structural evaluations revealed that cellulose, hemicelluloses, and lignin contributed to the dimensional stability of wood, especially that the polysaccharide network at cell corners sustained the honeycomb cell structure. Wood polymer assemblies featuring the anatomical structure of wood were also evaluated in terms of compressive properties. The modulus and strength reflected the density and anisotropy, whereas fracture behavior was well characterized by each wood polymer assembly through the classification of stress-strain curves based on principal component analysis. The difference in fracture behaviors indicated that the rigid lignin and flexible cellulose assemblies, possibly mediated by hemicelluloses, complementarily determine the unique compressive response of wood. These findings enable the adjustment of wood functionality and the selection of composite components for wood modification while inspiring the development of novel wood applications.


Assuntos
Lignina , Madeira , Lignina/química , Madeira/química , Polímeros/análise , Polissacarídeos/química , Celulose/química
2.
Int J Phytoremediation ; 25(10): 1384-1396, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37148212

RESUMO

To select urban greening tree species suitable for the purification of the atmosphere polluted by black carbon (BC) particles, it is necessary to clarify the determinants of the amount of BC particles deposited on the tree leaves. In the present study, we investigated the relationship between the amount of BC particles that were deposited from the atmosphere and firmly adhered to the leaf epicuticular wax, and leaf surface traits in seedlings of nine tree species grown for two years under natural conditions (Fuchu, Tokyo, Japan). There was a significant interspecific difference in the maximum amount of BC particles deposited on the leaf surface, and the order was as follows: Ilex rotunda > Cornus florida > Osmanthus fragrans > Cornus kousa > Quercus glauca ≒ Quercus myrsinifolia > Magnolia kobus ≒ Zelkova serrata ≒ Styrax japonicus. In the nine tree species, significant highly positive correlations were observed between the amount of BC particles deposited on the leaf surface, and the hydrophobicity of leaf epicuticular wax determined by its chemical composition. Therefore, we concluded that the hydrophobicity of leaf epicuticular wax is an important determinant of the amount of BC particles deposited on the leaf surface of urban greening tree species.


This is the first paper that shows that the hydrophobicity of leaf epicuticular wax is an important determinant of the amount of BC particles deposited on the leaf surface of urban greening tree species. This study will provide the basic and novel information for the selection of urban greening tree species suitable for the purification of the air polluted by BC particles.


Assuntos
Poluentes Atmosféricos , Árvores , Biodegradação Ambiental , Folhas de Planta/química , Plântula/química , Carbono/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análise
3.
Int J Phytoremediation ; 25(2): 252-262, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35549775

RESUMO

As black carbon (BC) particles can be deposited on the leaf surfaces, urban greening is considered to be effective in purifying urban air. However, little information on the seasonal variations in the amount of BC particles deposited on the leaf surfaces (BC amount on the leaves) is available in Japanese urban greening tree species. Therefore, we investigated seasonal variations in the BC amount on the leaves of evergreen (Quercus glauca, Quercus myrsinaefolia, Osmanthus fragrans and Ilex rotunda) and deciduous (Zelkova serrata, Styrax japonica, Magnolia kobus, Cornus kousa and Cornus florida) broad-leaved tree species. The BC amount on the leaves tended to increase from April for different periods, and then reached a saturated state in the tree species, excluding M. kobus. In the 4 evergreen broad-leaved trees, the seasonal variation was positively correlated with the atmospheric concentration of BC particle. In the 5 deciduous broad-leaved trees, the seasonal variation was negatively and positively correlated with the water-repellence (water droplet contact angle) and the amount of epicuticular wax on the leaf surface, respectively. Therefore, the BC amounts on the leaves of evergreen and deciduous broad-leaved urban tree species are considered to be mainly regulated by environmental factors and leaf surface characteristics, respectively.


This is the first paper that reports the seasonal variations in the amount of BC particles deposited on the leaves of Japanese urban greening tree species and their related factors such as environmental conditions and leaf surface characteristics. This study will provide the basic and novel information for the phytoremediation of urban air pollution induced by BC particles in Asia.


Assuntos
Fuligem , Árvores , Biodegradação Ambiental , Carbono , Folhas de Planta , Estações do Ano , Água , Japão
4.
Sci Rep ; 12(1): 9152, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35650388

RESUMO

The secondary tissues of woody plants consist of fragile cells and rigid cell walls. However, the structures are easily damaged during mechanical cross-sectioning for electron microscopy analysis. Broad argon ion beam (BIB) milling is commonly employed for scanning electron microscopy (SEM) of hard materials to generate a large and distortion-free cross-section. However, BIB milling has rarely been used in plant science. In the present study, SEM combined with BIB milling was validated as an accurate tool for structural observation of secondary woody tissues of two samples, living pine (Pinus densiflora) and high-density oak wood (Quercus phillyraeoides), and compared with classical microtome cross-sectioning. The BIB milling method does not require epoxy resin embedding because of prior chemical fixation and critical point drying of the sample, thus producing a three-dimensional image. The results showed that xylem structures were well-preserved in their natural state in the BIB-milled cross-section compared with the microtome cross-section. The observations using SEM combined with BIB milling were useful for wide-area imaging of both hard and soft plant tissues, which are difficult to observe with transmitted electron microscopy because it is difficult to obtain sections of such tissues, particularly those of fragile reaction woods.


Assuntos
Técnicas Histológicas , Madeira , Argônio , Técnicas Histológicas/métodos , Microscopia Eletrônica de Varredura , Xilema
5.
Planta ; 253(5): 99, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33847816

RESUMO

MAIN CONCLUSION: Calli derived from young leaves of Aesculus turbinata contained tracheary elements with large pores that resembled perforations of vessel elements. The differentiation of tracheary elements in vitro provides a useful system for detailed analysis of xylem cell differentiation. To examine the mechanism of formation of cell wall structures, new differentiation systems are required that allows us to induce highly organized structures, such as perforations. In this study, we developed such a system in which we were able to induce formation of tracheary elements with perforations, using calli of a hardwood, Aesculus turbinata. Young leaves of A. turbinata were placed on modified MS medium that contained 5 µM 2,4-dichlorophenoxyacetic acid (2,4-D) and 5 µM benzyladenine (BA). Tracheary elements were induced in calli derived from young leaves of A. turbinata. Some tracheary elements formed broad areas of secondary wall with typical features of secondary xylem. Other tracheary elements formed spiral thickenings, which are typical features of vessel elements in secondary xylem of A. turbinata. Approximately 10% of tracheary elements formed large pores that resembled perforations of vessel elements and various types of the perforation plate were observed. Addition of NAA and brassinolide to the induction medium enhanced the differentiation of tracheary elements in calli of A. turbinata. Newly induced tracheary elements also formed typical features of secondary xylem such as perforations of the vessel elements. Our model system might be useful in efforts to understand the mechanisms of formation of highly organized structures in tracheary elements in secondary xylem.


Assuntos
Aesculus , Diferenciação Celular , Parede Celular , Japão , Xilema
6.
Sci Rep ; 10(1): 14341, 2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32868796

RESUMO

Temperature is an important factor for the cambial growth in temperate trees. We investigated the way daily temperatures patterns (maximum, average and minimum) from late winter to early spring affected the timing of cambial reactivation and xylem differentiation in stems of the conifer Chamaecyparis pisifera. When the daily temperatures started to increase earlier from late winter to early spring, cambial reactivation occurred earlier. Cambium became active when it achieves the desired accumulated temperature above the threshold (cambial reactivation index; CRI) of 13 °C in 11 days in 2013 whereas 18 days in 2014. This difference in duration required for achieving accumulated temperature can be explained with the variations in the daily temperature patterns in 2013 and 2014. Our formula for calculation of CRI predicted the cambial reactivation in 2015. A hypothetical increase of 1-4 °C to the actual daily maximum temperatures of 2013 and 2014 shifted the timing of cambial reactivation and had different effects on cambial reactivation in the two consecutive years because of variations in the actual daily temperatures patterns. Thus, the specific annual pattern of accumulation of temperature from late winter to early spring is a critical factor in determining the timing of cambial reactivation in trees.


Assuntos
Chamaecyparis/fisiologia , Caules de Planta/fisiologia , Estações do Ano , Temperatura
7.
AoB Plants ; 12(4): plaa032, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32793329

RESUMO

Investigating plant structure is fundamental in botanical science and provides crucial knowledge for the theories of plant evolution, ecophysiology and for the biotechnological practices. Modern plant anatomy often targets the formation, localization and characterization of cellulosic, lignified or suberized cell walls. While classical methods developed in the 1960s are still popular, recent innovations in tissue preparation, fluorescence staining and microscopy equipment offer advantages to the traditional practices for investigation of the complex lignocellulosic walls. Our goal is to enhance the productivity and quality of microscopy work by focusing on quick and cost-effective preparation of thick sections or plant specimen surfaces and efficient use of direct fluorescent stains. We discuss popular histochemical microscopy techniques for visualization of cell walls, such as autofluorescence or staining with calcofluor, Congo red (CR), fluorol yellow (FY) and safranin, and provide detailed descriptions of our own approaches and protocols. Autofluorescence of lignin in combination with CR and FY staining can clearly differentiate between lignified, suberized and unlignified cell walls in root and stem tissues. Glycerol can serve as an effective clearing medium as well as the carrier of FY for staining of suberin and lipids allowing for observation of thick histological preparations. Three-dimensional (3D) imaging of all cell types together with chemical information by wide-field fluorescence or confocal laser scanning microscopy (CLSM) was achieved.

8.
Planta ; 251(6): 104, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32382847

RESUMO

MAIN CONCLUSION: An artificial lignified cell wall was synthesized in three steps: (1) isolation of microfibrillar network; (2) localization of peroxidase through immunoreaction; and (3) polymerization of DHP to lignify the cell wall. Artificial woody cell wall synthesis was performed following the three steps along with the actual formation in nature using cellulose microfibrils extracted from callus derived from Cryptomeria japonica. First, we constructed a polysaccharide network on a transmission electron microscopy (TEM) grid. The preparation method was optimized by chemical treatment, followed by mechanical fibrillation to create a microfibrillated network. Morphology was examined by TEM, and chemical characterization was by Fourier transform infrared (FTIR) spectroscopy. Second, we optimized the process to place peroxidase on the microfibrils via an immunoreaction technique. Using a xyloglucan antibody, we could ensure that gold particles attached to the secondary antibodies were widely and uniformly localized along with the microfibril network. Third, we applied the peroxidase attached to secondary antibodies and started to polymerize the lignin on the grid by simultaneously adding coniferyl alcohol and hydrogen peroxide. After 30 min of artificial lignification, TEM observation showed that lignin-like substances were deposited on the polysaccharide network. In addition, FTIR spectra revealed that the bands specific for lignin had increased, demonstrating the successful artificial formation of woody cell walls. This approach may be useful for studying woody cell wall formation and for producing made-to-order biomaterials.


Assuntos
Parede Celular/ultraestrutura , Celulose/metabolismo , Cryptomeria/química , Lignina/metabolismo , Microfibrilas/metabolismo , Peroxidase/metabolismo , Catálise , Parede Celular/química , Células Cultivadas , Celulose/ultraestrutura , Cryptomeria/enzimologia , Peróxido de Hidrogênio/metabolismo , Microfibrilas/ultraestrutura , Microscopia Eletrônica de Transmissão , Proteínas de Plantas/metabolismo , Polissacarídeos/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Madeira
9.
Amyloid ; 27(1): 25-35, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31615282

RESUMO

Amyloidosis is an extremely rare event in rats. In this study, we report that lipopolysaccharide binding protein (LBP) is the most likely amyloidogenic protein in rat mammary amyloidosis. Histologically, corpora amylacea (CA) and stromal amyloid (SA) were observed in rat mammary glands, and needle-shaped amyloid (NA) was also observed on the surface or gap of CA and SA. Following surveillance in aged rats, NA was observed in 62% of mammary tumours, 25% of male mammary glands and 83% of female mammary glands. Proteomic analysis showed that lactadherin was a major constitutive protein of CA and SA, and both were positive following immunohistochemistry with anti-lactadherin antibodies. In the same analysis, LBP was detected as a prime candidate protein in NA, and NA was positive following immunohistochemistry and immunoelectron microscopy with anti-LBP antibody. Furthermore, synthetic peptides derived from rat LBP formed amyloid fibrils in vitro. Overall, these results provide evidence that LBP is an amyloid precursor protein of NA in rat mammary glands.


Assuntos
Envelhecimento , Proteínas Amiloidogênicas/metabolismo , Amiloidose , Antígenos de Superfície/metabolismo , Glândulas Mamárias Animais , Proteínas do Leite/metabolismo , Placa Amiloide , Envelhecimento/metabolismo , Envelhecimento/patologia , Amiloidose/metabolismo , Amiloidose/patologia , Animais , Feminino , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Ratos , Ratos Sprague-Dawley
10.
Am J Bot ; 106(6): 760-771, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31157413

RESUMO

PREMISE: Cambial activity in some tropical trees varies intra-annually, with the formation of xylem rings. Identification of the climatic factors that regulate cambial activity is important for understanding the growth of such species. We analyzed the relationship between climatic factors and cambial activity in four tropical hardwoods, Acacia mangium, Tectona grandis, Eucalyptus urophylla, and Neolamarckia cadamba in Yogyakarta, Java Island, Indonesia, which has a rainy season (November-June) and a dry season (July-October). METHODS: Small blocks containing phloem, cambium, and xylem were collected from main stems in January 2014, October 2015 and October 2016, and examined with light microscopy for cambial cell division, fusiform cambial cells, and expanding xylem cells as evidence of cambial activity. RESULTS: During the rainy season, when precipitation was high, cambium was active. By contrast, during the dry season in 2015, when there was no precipitation, cambium was dormant. However, in October 2016, during the so-called dry season, cambium was active, cell division was conspicuous, and a new xylem ring formation was initiated. The difference in cambial activity appeared to be related to an unusual pattern of precipitation during the typically dry months, from July to October, in 2016. CONCLUSIONS: Our results indicate that low or absent precipitation for 3 to 4 months induces cessation of cambial activity and temporal periodicity of wood formation in the four species studied. By contrast, in the event of continuing precipitation, cambial activity in the same trees may continue throughout the year. The frequency pattern of precipitation appears to be an important determinant of wood formation in tropical trees.


Assuntos
Câmbio/anatomia & histologia , Câmbio/fisiologia , Chuva , Árvores/anatomia & histologia , Árvores/fisiologia , Acacia/anatomia & histologia , Acacia/crescimento & desenvolvimento , Acacia/fisiologia , Câmbio/crescimento & desenvolvimento , Divisão Celular , Eucalyptus/anatomia & histologia , Eucalyptus/crescimento & desenvolvimento , Eucalyptus/fisiologia , Agricultura Florestal , Indonésia , Lamiaceae/anatomia & histologia , Lamiaceae/crescimento & desenvolvimento , Lamiaceae/fisiologia , Rubiaceae/anatomia & histologia , Rubiaceae/crescimento & desenvolvimento , Rubiaceae/fisiologia , Estações do Ano , Especificidade da Espécie , Árvores/crescimento & desenvolvimento
11.
J Plant Res ; 131(6): 907-914, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30203164

RESUMO

Ozone is an air pollutant that negatively affects photosynthesis in woody plants. Previous studies suggested that ozone-induced reduction in photosynthetic rates is mainly attributable to a decrease of maximum carboxylation rate (Vcmax) and/or maximum electron transport rate (Jmax) estimated from response of net photosynthetic rate (A) to intercellular CO2 concentration (Ci) (A/Ci curve) assuming that mesophyll conductance for CO2 diffusion (gm) is infinite. Although it is known that Ci-based Vcmax and Jmax are potentially influenced by gm, its contribution to ozone responses in Ci-based Vcmax and Jmax is still unclear. In the present study, therefore, we analysed photosynthetic processes including gm in leaves of Siebold's beech (Fagus crenata) seedlings grown under three levels of ozone (charcoal-filtered air or ozone at 1.0- or 1.5-times ambient concentration) for two growing seasons in 2016-2017. Leaf gas exchange and chlorophyll fluorescence were simultaneously measured in July and September of the second growing season. We determined the A, stomatal conductance to water vapor and gm, and analysed A/Ci curve and A/Cc curve (Cc: chloroplast CO2 concentration). We also determined the Rubisco and chlorophyll contents in leaves. In September, ozone significantly decreased Ci-based Vcmax. At the same time, ozone decreased gm, whereas there was no significant effect of ozone on Cc-based Vcmax or the contents of Rubisco and chlorophyll in leaves. These results suggest that ozone-induced reduction in Ci-based Vcmax is a result of the decrease in gm rather than in carboxylation capacity. The decrease in gm by elevated ozone was offset by an increase in Ci, and Cc did not differ depending on ozone treatment. Since Cc-based Vcmax was also similar, A was not changed by elevated ozone. We conclude that gm is an important factor for reduction in Ci-based Vcmax of Siebold's beech under elevated ozone.


Assuntos
Dióxido de Carbono/metabolismo , Fagus/fisiologia , Células do Mesofilo/fisiologia , Ozônio/farmacologia , Folhas de Planta/metabolismo , Plântula/fisiologia , Poluentes Atmosféricos/farmacologia , Clorofila/metabolismo , Relação Dose-Resposta a Droga , Fagus/metabolismo , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Plântula/efeitos dos fármacos , Plântula/metabolismo
12.
Ann Bot ; 122(1): 87-94, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29726920

RESUMO

Background and Aims: In response to a gravitational stimulus, angiosperm trees generally form tension wood on the upper sides of leaning stems in order to reorientate the stems in the vertical direction. It is unclear whether the angle of inclination from the vertical affects tension wood formation. This study was designed to investigate negative gravitropism, tension wood formation and growth eccentricity in Acacia mangium seedlings inclined at different angles. Methods: Uniform seedlings of A. mangium were artificially inclined at 30°, 45°, 60° and 90° from the vertical and harvested, with non-inclined controls, 3 months later. We analysed the effects of the angle of inclination on the stem recovery angle, the anatomical features of tension wood and radial growth. Key Results: Smaller inclination angles were associated with earlier stem recovery while stems subjected to greater inclination returned to the vertical direction after a longer delay. However, in terms of the speed of negative gravitopism towards the vertical, stems subjected to greater inclination moved more rapidly toward the vertical. There was no significant difference in terms of growth eccentricity among seedlings inclined at different angles. The 30°-inclined seedlings formed the narrowest region of tension wood but there were no significant differences among seedlings inclined at 45°, 60° and 90°. The 90°-inclined seedlings formed thicker gelatinous layers than those in 30°-, 45°- and 60°-inclined seedlings. Conclusion: Our results suggest that the angle of inclination of the stem influences negative gravitropism, the width of the tension wood region and the thickness of gelatinous layers. Larger amounts of gelatinous fibres and thicker gelatinous layers might generate the higher tensile stress required for the higher speed of stem-recovery movement in A. mangium seedlings.


Assuntos
Acacia/fisiologia , Gravitropismo , Acacia/anatomia & histologia , Acacia/crescimento & desenvolvimento , Gravitação , Plântula/anatomia & histologia , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Madeira/anatomia & histologia , Madeira/crescimento & desenvolvimento , Madeira/fisiologia
13.
J Plant Res ; 131(2): 271-284, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29273862

RESUMO

All fine root systems consist of individual fine roots. Individual roots have morphological, anatomical, and functional heterogeneity (heterorhizy). Heterorhizy plays crucial roles in plant ecosystems. However, in many species, the heterorhizy and fine root system architecture based on individual root units are unclear. This study investigated heterorhizy along the root system architecture of Vaccinium virgatum Ait (rabbiteye blueberry) softwood-cuttings (propagated from annual shoots in growing season) using protoxylem groups (PGs), a classification according to the number of protoxylem poles, as an indicator of individual root traits. Individual roots of rabbiteye blueberry varied from monarch to heptarch. The frequency of roots with larger number of PGs decreased but those with smaller number of PGs increased from adventitious roots toward lateral roots with different branching levels. This architecture were stable among cultivars, collecting position of the cuttings, or indole acetic acids treatment. Individual root sizes and secondary growth were positively correlated with the PGs. These results indicate that branching itself strongly and broadly controls individual root traits. The individual roots were classified into two types: monarch and diarch roots with small size and lacking secondary growth (thought to be hair roots in core Ericaceae) and triarch or more PG roots with large size and showing secondary growth. These heterogeneous individual roots responded differently to the experimental factors. In particular, elongation of the large roots significantly contributed to increased total root length. These results mean that heterorhizic plasticity is a determinant of root system development and heterorhizic variation exists even under practical cutting condition. In conclusion, we demonstrated heterorhizy of rabbieye blueberry cuttings based on the strong relationships of PG, individual root morphology and growth potential, and root system architecture. This study also supports strong connection between root morphology and functional roles intermediated by the PG.


Assuntos
Mirtilos Azuis (Planta)/anatomia & histologia , Raízes de Plantas/anatomia & histologia , Mirtilos Azuis (Planta)/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Xilema/classificação
14.
J Plant Res ; 129(5): 873-881, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27294967

RESUMO

Elucidation of the mechanism of adsorption of particles suspended in the gas-phase (aerosol) to the outer surfaces of leaves provides useful information for understanding the mechanisms of the effect of aerosol particles on the growth and physiological functions of trees. In the present study, we examined the localization of artificially deposited sub-micron-sized carbon-based particles on the surfaces of needles of Cryptomeria japonica, a typical Japanese coniferous tree species, by field-emission scanning electron microscopy. The clusters (aggregates) of carbon-based particles were deposited on the needle surface regions where epicuticular wax crystals were sparsely distributed. By contrast, no clusters of the particles were found on the needle surface regions with dense distribution of epicuticular wax crystals. Number of clusters of carbon-based particles per unit area showed statistically significant differences between regions with sparse epicuticular wax crystals and those with dense epicuticular wax crystals. These results suggest that epicuticular wax crystals affect distribution of carbon-based particles on needles. Therefore, densely distributed epicuticular wax crystals might prevent the deposition of sub-micron-sized carbon-based particles on the surfaces of needles of Cryptomeria japonica to retain the function of stomata.


Assuntos
Aerossóis/farmacologia , Carbono/farmacologia , Cryptomeria/química , Epiderme Vegetal/química , Folhas de Planta/química , Ceras/química , Cryptomeria/efeitos dos fármacos , Cristalização , Tamanho da Partícula , Epiderme Vegetal/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/ultraestrutura
15.
Planta ; 243(5): 1225-36, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26895336

RESUMO

MAIN CONCLUSION: The work demonstrates a relationship between the biosynthesis of the secondary metabolite, agatharesinol, and cytological changes that occur in ray parenchyma during cell death in sapwood sticks of Cryptomeria japonica under humidity-regulated conditions. To characterize the death of ray parenchyma cells that accompanies the biosynthesis of secondary metabolites, we examined cell death in sapwood sticks of Cryptomeria japonica under humidity-regulated conditions. We monitored features of ray parenchyma cells, such as viability, the morphology of nuclei and vacuoles, and the amount of starch grains. In addition, we analyzed levels of agatharesinol, a heartwood norlignan, by gas chromatography-mass spectrometry in the same sapwood sticks. Dramatic changes in the amount of starch grains and in the level of agatharesinol occurred simultaneously. Therefore, the biosynthesis of agatharesinol appeared to originate from the breakdown of starch. Furthermore, we observed the expansion of vacuoles in ray parenchyma cells prior to other cytological changes at the final stage of cell death. In our experimental system, we were able to follow the process of cell death and to demonstrate relationships between cytological changes and the biosynthesis of a secondary metabolite during the death of ray parenchyma cells.


Assuntos
Cryptomeria/citologia , Cryptomeria/metabolismo , Lignanas/metabolismo , Morte Celular , Cromatografia Gasosa-Espectrometria de Massas , Microscopia Eletrônica de Transmissão , Células Vegetais/metabolismo , Células Vegetais/ultraestrutura , Metabolismo Secundário , Amido/metabolismo , Madeira/citologia , Madeira/metabolismo
16.
Ann Bot ; 117(3): 457-63, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26818592

RESUMO

BACKGROUND AND AIMS: When the orientation of the stems of conifers departs from the vertical as a result of environmental influences, conifers form compression wood that results in restoration of verticality. It is well known that intercellular spaces are formed between tracheids in compression wood, but the function of these spaces remains to be clarified. In the present study, we evaluated the impact of these spaces in artificially induced compression wood in Chamaecyparis obtusa seedlings. METHODS: We monitored the presence or absence of liquid in the intercellular spaces of differentiating xylem by cryo-scanning electron microscopy. In addition, we analysed the relationship between intercellular spaces and the hydraulic properties of the compression wood. KEY RESULTS: Initially, we detected small intercellular spaces with liquid in regions in which the profiles of tracheids were not rounded in transverse surfaces, indicating that the intercellular spaces had originally contained no gases. In the regions where tracheids had formed secondary walls, we found that some intercellular spaces had lost their liquid. Cavitation of intercellular spaces would affect hydraulic conductivity as a consequence of the induction of cavitation in neighbouring tracheids. CONCLUSIONS: Our observations suggest that cavitation of intercellular spaces is the critical event that affects not only the functions of intercellular spaces but also the hydraulic properties of compression wood.


Assuntos
Chamaecyparis/fisiologia , Espaço Extracelular/metabolismo , Plântula/fisiologia , Água/metabolismo , Madeira/fisiologia , Microscopia de Fluorescência , Plântula/ultraestrutura , Madeira/ultraestrutura
17.
Ann Bot ; 117(3): 465-77, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26703452

RESUMO

BACKGROUND AND AIMS: In temperate regions, trees undergo annual cycles of cambial growth, with periods of cambial activity and dormancy. Environmental factors might regulate the cambial growth, as well as the development of cambial derivatives. We investigated the effects of low temperature by localized cooling on cambial activity and latewood formation in two conifers, Chamaecyparis obtusa and Cryptomeria japonica. METHODS: A plastic rubber tube that contained cooled water was wrapped around a 30-cm-wide portion of the main stem of Chamaecyparis obtusa and Cryptomeria japonica trees during seasons of active cambium. Small blocks were collected from both cooled and non-cooled control portions of the stems for sequential observations of cambial activity and for anatomical measurements of cell morphology by light microscopy and image analysis. KEY RESULTS: The effect of localized cooling was first observed on differentiating tracheids. Tracheids narrow in diameter and with significantly decreased cambial activity were evident 5 weeks after the start of cooling in these stems. Eight weeks after the start of cooling, tracheids with clearly diminished diameters and thickened cell walls were observed in these stems. Thus, localized low temperature induced narrow diameters and obvious thickening of secondary cell walls of tracheids, which were identified as latewood tracheids. Two months after the cessation of cooling, a false annual ring was observed and cambium became active again and produced new tracheids. In Cryptomeria japonica, cambial activity ceased earlier in locally cooled portions of stems than in non-cooled stems, indicating that the cambium had entered dormancy sooner in the cooled stems. CONCLUSIONS: Artificial cooling of stems induced latewood formation and cessation of cambial activity, indicating that cambium and its derivatives can respond directly to changes in temperature. A decrease in the temperature of the stem is a critical factor in the control of cambial activity and xylem differentiation in trees.


Assuntos
Câmbio/fisiologia , Temperatura Baixa , Caules de Planta/fisiologia , Estações do Ano , Traqueófitas/fisiologia , Madeira/fisiologia , Ar , Chamaecyparis/fisiologia , Cryptomeria/fisiologia
18.
J Exp Zool B Mol Dev Evol ; 324(1): 68-76, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25504930

RESUMO

The male sex pheromone of the longicorn beetle, Xylotrechus pyrrhoderus pyrrhoderus Bates (Cerambycidae: Tribe Clytini) plays an important role in attracting females. This pheromone is produced by the pheromone gland located in the prothorax. However, the detailed structure and underlying developmental process of this gland are still unknown. We investigated the gland structure by using histological analysis and confirmed that the gland consists of the following parts: gland cell mass, a unique spherical space in the cuticle layer, and ductules connecting the gland cells with the spherical space and conducting canals to the outer opening. The gland structure first appeared male-specific in the late pupal stage, during which the epidermal cells began depositing the exocuticle; the development of the gland was completed after adult emergence. Furthermore, we verified the structural equivalents of the X. p. pyrrhoderus male pheromone gland in 11 species of 2 tribes, Clytini and Anaglyptini. The glands of these insects could be classified into four types on the basis of the absence or presence of the spherical space and the division of the gland cell mass layer. Most noteworthy, all the species with the spherical space and division-type gland were restricted to the Xylotrechus clade, as inferred from the molecular phylogenetic analysis. These results suggest that Clytini and Anaglyptini species share a fundamental process of male pheromone gland development, and that the Japanese Xylotrechus species might have established their current status by developing distinct structural features in the male pheromone gland.


Assuntos
Besouros/anatomia & histologia , Besouros/crescimento & desenvolvimento , Glândulas Exócrinas/anatomia & histologia , Glândulas Exócrinas/crescimento & desenvolvimento , Animais , Sequência de Bases , Besouros/classificação , Masculino , Dados de Sequência Molecular , Filogenia , Pupa/anatomia & histologia , Pupa/crescimento & desenvolvimento , Atrativos Sexuais
19.
Sci Rep ; 4: 6567, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25298209

RESUMO

Lignin modification has been a breeding target for the improvements of forage digestibility and energy yields in forage and bioenergy crops, but decreased lignin levels are often accompanied by reduced lodging resistance. The rice mutant gold hull and internode2 (gh2) has been identified to be lignin deficient. GH2 has been mapped to the short arm of chromosome 2 and encodes cinnamyl-alcohol dehydrogenase (CAD). We developed a long-culm variety, 'Leaf Star', with superior lodging resistance and a gh phenotype similar to one of its parents, 'Chugoku 117'. The gh loci in Leaf Star and Chugoku 117 were localized to the same region of chromosome 2 as the gh2 mutant. Leaf Star had culms with low lignin concentrations due to a natural mutation in OsCAD2 that was not present in Chugoku 117. However, this variety had high culm strength due to its strong, thick culms. Additionally, this variety had a thick layer of cortical fiber tissue with well-developed secondary cell walls. Our results suggest that rice can be improved for forage and bioenergy production by combining superior lodging resistance, which can be obtained by introducing thick and stiff culm traits, with low lignin concentrations, which can be obtained using the gh2 variety.


Assuntos
Oxirredutases do Álcool/genética , Parede Celular/metabolismo , Lignina/biossíntese , Oryza/genética , Sequência de Bases , Biomassa , Cruzamento , Mapeamento Cromossômico , Produtos Agrícolas/classificação , Produtos Agrícolas/genética , Lignina/genética , Oryza/classificação , Locos de Características Quantitativas , Análise de Sequência de DNA
20.
Ann Bot ; 113(6): 1021-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24685716

RESUMO

BACKGROUND AND AIMS: The networks of vessel elements play a vital role in the transport of water from roots to leaves, and the continuous formation of earlywood vessels is crucial for the growth of ring-porous hardwoods. The differentiation of earlywood vessels is controlled by external and internal factors. The present study was designed to identify the limiting factors in the induction of cambial reactivation and the differentiation of earlywood vessels, using localized heating and disbudding of dormant stems of seedlings of a deciduous ring-porous hardwood, Quercus serrata. METHODS: Localized heating was achieved by wrapping an electric heating ribbon around stems. Disbudding involved removal of all buds. Three treatments were initiated on 1 February 2012, namely heating, disbudding and a combination of heating and disbudding, with untreated dormant stems as controls. Cambial reactivation and differentiation of vessel elements were monitored by light and polarized-light microscopy, and the growth of buds was followed. KEY RESULTS: Cambial reactivation and differentiation of vessel elements occurred sooner in heated seedlings than in non-heated seedlings before bud break. The combination of heating and disbudding of seedlings also resulted in earlier cambial reactivation and differentiation of first vessel elements than in non-heated seedlings. A few narrow vessel elements were formed during heating after disbudding, while many large earlywood vessel elements were formed in heated seedlings with buds. CONCLUSIONS: The results suggested that, in seedlings of the deciduous ring-porous hardwood Quercus serrata, elevated temperature was a direct trigger for cambial reactivation and differentiation of first vessel elements. Bud growth was not essential for cambial reactivation and differentiation of first vessel elements, but might be important for the continuous formation of wide vessel elements.


Assuntos
Temperatura Alta , Quercus/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...